Course Type	Course Code	Name of the Course	L	Т	Р	Credits
DC	NGLC510	Hydrogeology	3	0	0	3

Course Objective

In this course the students will study the fundamental concepts and principles of occurrence, movement and quality of groundwater, focusing on quantitative analysis.

Learning Outcomes

Upon completion of the course, students will be able to: • Assess the role of water in Earth's climate

- Distinguish between confined & unconfined aquifers
- Apply Darcy's Law to groundwater flow and geological material interpretation; •
- Use pump test data for groundwater flow applications. ٠
- Develop skills in approaching complex problems involving flow and storage of groundwater Gain knowledge on sustainable development of groundwater resources.
- •

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Introduction to Hydrogeology: Water on Earth; Types of water; Distribution of water; Role of water in Earth's climate; Hydrological cycle and its components	3	Introduction to Hydrogeology: Learn about key hydrologic processes
2	Occurrence of Groundwater: Water-bearing properties of rocks-porosity, intrinsic permeability, specific yield and specific retention; Vertical distribution of water; Zone of aeration and zone of saturation; Classification of rocks according to their water-bearing properties; Aquifers; Classification of aquifers; quantitative assessment of aquifer properties; Concepts of drainage basins and groundwater basins; Basics of vadose zone hydrology.	10	Occurrence of Groundwater: Get to know how water is stored in the subsurface and its distribution with depth
3	Aquifer Characteristics: Aquifer parameters: transmissivity, hydraulic conductivity and storage coefficient; Determination of permeability in laboratory; Concept of heterogeneity and anisotropy; Characteristic differences between confined and unconfined aquifers; Water table and piezometric surface; Fluctuations of water table and piezometric surface; Water table contour maps; Hydrographs; Hydrostratigraphic units.	7	Aquifer Characteristics: Understand the fundamental properties of sub surface storage and their key controls.
4	Principles of Groundwater Movement: Hydrostatic pressure; Fluid potential; Energy in groundwater; Hydraulic head; Theory of groundwater flow; Darcy's law and its applications; Specific discharge; Limitations of Darcy's Law; Reynolds Number; Governing equation for flow through porous medium; Steady and non-steady state flow - Initial and boundary Conditions; Solution of flow equations; Dupuit's Assumption; Boussinesq Equation; Streamlines and flownet analysis; Groundwater flow patterns, Groundwater- Surface water interactions; Determination of flow direction	12	Principles of Groundwater Movement: Understand the factors driving the movement of water.
5	Well Hydraulics: Flow through aquifers: 2-D groundwater flow equations; Flow in steady and non-steady state conditions; Evaluation of aquifer parameters of confined, semi-confined and unconfined aquifers - Thiem, Theis and Jacob methods; numerical problems on pumping test.	6	Well Hydraulics: Get to know how water flows in the saturated subsurface in different dimensions.
6	Groundwater Quality: Physical and chemical properties of water; chemical reactions; Quality criteria for different uses; Graphical presentation of groundwater quality data; Saline water intrusion (Ghyben-Herzberg relation)	2	Groundwater quality: Will know how to assess the quality and suitability of groundwater and the sources of contamination

Text Books:

- 1. Groundwater Hydrology by D. K. Todd and L. W. Mays, 3rd Edition, 2011, Wiley India.
- 2. Applied Hydrogeology by C. W. Fetter, 4th Edition, 2014, Pearson New International.

Reference Books:

- Groundwater by H. M. Raghunath, 3rd Edition, 2007, New Age International Publishers.
 Physical and Chemical Hydrogeology by P. A. Domenico and F. W. Shcwartz, 2nd Edition, 1997, Wiley.
- 3. Elements of Physical Hydrology by G. M. Hornberger, J. P. Raffensperger, P. L. Wiberg and K. N. Eshleman, 1st Edition, 1998, The Johns Hopkins University Press.